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Abstract. A recently introduced nonlinear Fokker-Planck equation, derived directly from a master equa-
tion, comes out as a very general tool to describe phenomenologically systems presenting complex behavior,
like anomalous diffusion, in the presence of external forces. Such an equation is characterized by a nonlinear
diffusion term that may present, in general, two distinct powers of the probability distribution. Herein, we
calculate the stationary-state distributions of this equation in some special cases, and introduce associated
classes of generalized entropies in order to satisfy the H-theorem. Within this approach, the parameters as-
sociated with the transition rates of the original master-equation are related to such generalized entropies,
and are shown to obey some restrictions. Some particular cases are discussed.

PACS. 05.40.Fb Random walks and Levy flights – 05.20.-y Classical statistical mechanics – 05.40.Jc
Brownian motion – 66.10.Cb Diffusion and thermal diffusion

1 Introduction

The standard statistical-mechanics formalism, as pro-
posed originally by Boltzmann and Gibbs (BG), is con-
sidered as one of the most successful theories of physics,
and it has enabled physicists to propose theoretical models
in order to derive thermodynamical properties for real sys-
tems, by approaching the problem from the microscopic
scale. Such a prescription has led to an adequate descrip-
tion of a large diversity of physical systems, essentially
those represented by linear equations and characterized
by short-range interactions and/or short-time memories.
Although BG statistical mechanics is well formulated (un-
der certain restrictions) for systems at equilibrium, the
same is not true for out-of-equilibrium systems, in such
a way that most of this theory applies only near equilib-
rium [1–3]. One of the most important phenomenological
equations of nonequilibrium statistical mechanics is the
linear Fokker-Planck equation (FPE), that rules the time
evolution of the probability distribution associated with a
given physical system, in the presence of an external force
field [4], provided that the states of the system can be ex-
pressed by a continuum. This equation deals satisfactorily
with many physical situations, e.g., those associated with
normal diffusion, and is essentially associated with the BG
formalism, in the sense that the Boltzmann distribution,
which is usually obtained through the maximization of the
BG entropy under certain constraints (the so-called Max-
Ent principle), also appears as the stationary solution of
the linear FPE [4,5].
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Nevertheless, restrictions to the applicability of the BG
statistical-mechanics formalism have been found in many
systems, including for instance, those characterized by
nonlinearities, long-range interactions and/or long-time
memories, which may present several types of anomalous
behavior, e.g., stationary states far from equilibrium [6–8].
These anomalous behaviors suggest that a more general
theory is required; as a consequence of that, many at-
tempts have been made, essentially by proposing general-
izations of the BG entropy [9–19]. Among these, the most
successful proposal, so far, appears to be the one suggested
by Tsallis [9], through the introduction of a generalized en-
tropy, characterized by an index q, in such a way that the
BG entropy is recovered in the limit q → 1. The usual
extensivity property of some thermodynamic quantities
holds only for q = 1, and if q �= 1 such quantities do not
increase linearly with the size of the system; this has led to
the so-called nonextensive statistical-mechanics formalism
[6–8].

Among many systems that present unusual behavior,
one should mention those characterized by anomalous dif-
fusion, e.g., particle transport in disordered media. A pos-
sible alternative for describing anomalous-transport pro-
cesses consists in introducing modifications in the stan-
dard FPE. Within the most common procedure, one con-
siders nonlinear FPEs [20], that in most of the cases
come out as simple phenomenological generalizations of
the usual linear FPE [21–32]. In these nonlinear sys-
tems, interesting new aspects appear, leading to a wide
range of open problems, in such a way that their in-
vestigation has led to a new research area in physics,
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with a lot of applications in natural systems. It is very
common to find the power-law-like probability distri-
bution that maximizes Tsallis’ entropy as solutions of
some nonlinear FPEs [20–22,24,25,31–33]. It seems that
the nonextensive statistical mechanics formalism appears
to be intimately related to nonlinear FPEs, motivating
an investigation for a better understanding of possible
connections between generalized entropies and nonlinear
FPEs [20–22,26,27,31,32,34–37].

Recently, a general nonlinear FPE has been derived
directly from a standard master equation, by introducing
nonlinear contributions in the associated transition prob-
abilities, leading to [38,39]

∂P (x, t)
∂t

= −∂(A(x)P (x, t))
∂x

+
∂

∂x

(
Ω[P (x, t)]

∂P (x, t)
∂x

)
;

Ω[P ] = aµPµ−1 + b(2 − ν)P ν−1, (1)

where a and b are constants, whereas µ and ν are real
exponents1. The system is in the presence of an exter-
nal potential φ(x), associated with a dimensionless force

A(x) = −dφ(x)/dx [φ(x) = −
x∫

−∞
A(x′)dx′]; herein, we

assume analyticity of the potential φ(x) and integrability
of the force A(x) in all space.

In what concerns the functional Ω[P (x, t)], we are as-
suming its differentiability and integrability with respect
to the probability distribution P (x, t), in such a way that
at least its first derivative exists, i.e., that it should be at
least Ω[P ] ∈ C1. Furthermore, this functional should be a
positive finite quantity, as expected for a proper diffusion-
like term; this property will be verified later on, as a direct
consequence of the H-theorem.

As usual, we assume that the probability distribution,
together with its first derivative, as well as the product
A(x)P (x, t), should all be zero at infinity,

P (x, t)|x→±∞ = 0;
∂P (x, t)

∂x

∣∣∣∣
x→±∞

= 0;

A(x)P (x, t)|x→±∞ = 0, (∀t). (2)

The conditions above guarantee the preservation of the
normalization for the probability distribution, i.e., if for
a given time t0 one has that

∫ ∞
−∞ dx P (x, t0) = 1, then

a simple integration of equation (1) with respect to the
variable x yields,

∂

∂t

∫ ∞

−∞
dx P (x, t) = − [A(x)P (x, t)]∞−∞

+
(

Ω[P (x, t)]
∂P (x, t)

∂x

)∞

−∞
= 0, (3)

1 Even though one could use a simpler notation for the func-

tional Ω[P ], e.g., Ω[P ] = a′P µ′
+b′P ν′

, herein we will keep the
notation of equation (1), as appeared naturally in the deriva-
tion of the above FPE, for a consistency with previous publi-
cations [38,39].

and so,
∫ ∞

−∞
dx P (x, t) =

∫ ∞

−∞
dx P (x, t0) = 1 (∀t). (4)

In the present work we investigate further properties of
the nonlinear FPE of equation (1), finding stationary so-
lutions in several particular cases, and discussing its asso-
ciated entropies, that were introduced in order to satisfy
the H-theorem. In the next section we present station-
ary solutions of this equation; in Section 3 we prove the
H-theorem by using equation (1), and show that the valid-
ity of this theorem can be directly related to the definition
of a general entropic form associated with this nonlinear
FPE. In Section 4 we discuss particular cases of this gen-
eral entropic form and their associated nonlinear FPEs.
Finally, in Section 5 we present our conclusions.

2 Stationary state

The nonlinear FPE of equation (1) is very general and cov-
ers several particular cases, e.g., the one related to Tsallis’
thermostatistics [21,22,33]. In this section we will restrict
ourselves to a stationary state, and will derive the corre-
sponding solutions for particular values of the parameters
associated with this equation.

Let us then rewrite equation (1) in the form of a con-
tinuity equation,

∂P (x, t)
∂t

+
∂j(x, t)

∂x
= 0;

j(x, t) = A(x)P (x, t) − Ω[P (x, t)]
∂P (x, t)

∂x
, (5)

in such a way that a stationary solution of equation (1),
Pst(x), is associated with a stationary probability flux,
jst(x) = constant, which becomes jst(x) = 0, when one
uses equation (2). Therefore, using the functional Ω[P ] of
equation (1), the stationary-state solution satisfies,

A(x) =
[
aµPµ−2

st (x) + b(2 − ν)P ν−2
st (x)

] ∂Pst(x)
∂x

, (6)

which, after integration, becomes

φ0 − φ(x) = a
µ

µ − 1
Pµ−1

st (x) + b
2 − ν

ν − 1
P ν−1

st (x), (7)

where φ0 represents a constant. The equation above may
be solved easily in some particular cases, e.g., ν = µ, ν =
2, and µ = 0,

Pst(x) =
1

Z(1)

[
1 − φ(x)

φ0

] 1
α−1

+

;

Z(1) =

∞∫
−∞

dx

[
1 − φ(x)

φ0

] 1
α−1

+

, (8)
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where α = µ, in the cases ν = µ and ν = 2, whereas
α = ν, if µ = 0. In the equation above, [y]+ = y, for y > 0,
and zero otherwise. Another type of solution applies for
µ = 2ν − 1, or ν = 2µ − 1,

Pst(x) =
1

Z(2)

[
1 ±

√
1 + K (φ(x) − φ0)

] 1
α−1

+
;

Z(2) =

∞∫
−∞

dx
[
1 ±

√
1 + K (φ(x) − φ0)

] 1
α−1

+
, (9)

where

K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2a
b2

(2ν − 1)(ν − 1)
(2 − ν)2

, if µ=2ν−1 (α=ν),

2b
a2

(3 − 2µ)(µ − 1)
µ2 , if ν =2µ−1 (α=µ),

(10)
and we are assuming that [1 + K(φ(x) − φ0)] ≥ 0. Some
well-known particular cases of the stationary solutions
presented above come out easily, e.g., from equation (8)
one obtains, in all three situations that yielded this equa-
tion, the exponential solution associated with the linear
FPE in the limit α → 1 [with φ0 ∝ (α − 1)−1], as well
as the generalized exponential solution related to Tsallis
thermostatistics, for α = 2 − q, where q denotes Tsallis’
entropic index.

3 H-theorem and the associated entropy

In this section we will demonstrate the H-theorem by mak-
ing use of equation (1), and for that purpose, an entropic
form related to this equation will be introduced. Let us
therefore suppose a general entropic form satisfying the
following conditions,

S =

∞∫
−∞

dx g[P (x)]; g[0] = 0; g[1] = 0;
d2g

dP 2
≤ 0, (11)

where one should have g[P (x, t)] at least as g[P (x, t)] ∈
C2; in addition to that, let us also define the free-energy
functional,

F = U − 1
β

S; U =

∞∫
−∞

dx φ(x)P (x, t), (12)

where β represents a Lagrange multiplier, restricted to
β ≥ 0. Furthermore, we will show that this free-energy
functional is bounded from below; this condition, together
with the H-theorem [(∂F/∂t) ≤ 0), leads, after a long
time, the system towards a stationary state.

3.1 H-theorem

The H-theorem for a system that exchanges energy with
its surrounding, herein represented by the potential φ(x),

corresponds to a well-defined sign for the time derivative of
the free-energy functional defined in equation (12). Using
the definitions above,

∂F

∂t
=

∂

∂t

⎛
⎝

∞∫
−∞

dx φ(x)P (x, t) − 1
β

∞∫
−∞

dx g[P ]

⎞
⎠

=

∞∫
−∞

dx

(
φ(x) − 1

β

∂g[P ]
∂P

)
∂P

∂t
. (13)

Now, one may use the FPE of equation (1) for the time
derivative of the probability distribution; carrying out an
integration by parts, and using the conditions of equa-
tion (2), one obtains,

∂F

∂t
= −

∞∫
−∞

dx

[
dφ(x)

dx
P (x, t)

+Ω[P ]
∂P

∂x

] [
dφ(x)

dx
− 1

β

∂2g[P ]
∂P 2

∂P

∂x

]
. (14)

Usually, one is interested in verifying the H-theorem
from a well-defined FPE, together with a particular en-
tropic form, in such a way that the quantities Ω[P ] and
∂2g[P ]/∂P 2 are previously defined (see, e.g., Refs. [20,
40]). Herein, we follow a different approach, by assuming
that the general equations (1) and (11) should be satisfied;
then, we impose the condition,

∂2g[P ]
∂P 2

= −β
Ω[P ]

P (x, t)
, (15)

in such way that,

∂F

∂t
= −

∞∫
−∞

dx P (x, t)
[
dφ(x)

dx
+

Ω[P ]
P (x, t)

∂P

∂x

]2

≤ 0. (16)

It should be noticed that equation (15), introduced in such
a way to provide a well-defined sign for the time deriva-
tive of the free-energy functional, yields two important
conditions, as described next.

(i) Ω[P ] ≥ 0 [cf. Eq. (11)], which is expected for an ap-
propriate diffusion-like term.

(ii) It expresses a relation involving the FPE of equa-
tion (1) and an associated entropic form, allowing for
the calculation of such an entropic form, given the
FPE, and vice-versa. Since the FPE is a phenomeno-
logical equation that specifies the dynamical evolution
associated with a given physical system, equation (15)
may be useful in the identification of the entropic
form associated with such a system. In particular, the
present approach makes it possible to identify entropic
forms associated with some anomalous systems, ex-
hibiting unusual behavior, that are appropriately de-
scribed by nonlinear FPEs, like the one of equation (1).
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As an illustration of this point, let us consider the sim-
ple case of a linear FPE, that describes the dynamical
evolution of many physical systems, essentially those
characterized by normal diffusion. This equation may
be recovered from equation (1) by choosing µ = ν = 1,
in such a way that Ω[P ] = a + b = D, where D rep-
resents a positive constant diffusion coefficient with
units (time)−1. One may now set the Lagrange multi-
plier β = kB/D, where kB represents the Boltzmann
constant; integrating equation (15), and using the con-
ditions of equation (11), one gets the well-known BG
entropic form,

g[P ] = −kBP ln P. (17)

In the next section we will explore further the relation of
equation (15), by analyzing other particular cases.

The simplest situation for which condition (i) above is
satisfied may be obtained by imposing both terms of the
functional Ω[P ] to be positive, which leads to

a ≥ 0; µ ≥ 0, or a < 0; µ < 0, (18)

and
b ≥ 0; ν ≤ 2, or b < 0; ν > 2. (19)

It should be stressed that it is possible to have Ω[P ] ≥ 0
with less restrictive ranges for the parameters above. How-
ever, an additional property for the free-energy functional
of equation (12) to be discussed next, namely, the bound-
ness from below, requires the conditions of equations (18)
and (19), with the additional restriction ν > 0.

Now, integrating equation (15) for the general func-
tional Ω[P ] of equation (1), and using the standard con-
ditions for g[P ] defined in equation (11), one gets that

g[P ] = −β

[
a

µ − 1
Pµ + b

2 − ν

ν(ν − 1)
P ν

+
aν(1 − ν) + b(2 − ν)(1 − µ)

(1 − µ)(1 − ν)ν
P

]
. (20)

This entropic form recovers, as particular cases, the BG
entropy (e.g., when µ, ν → 1) and several generalized en-
tropies defined previously in the literature, like those in-
troduced by Tsallis [9], Abe [10], Borges-Roditi [12], and
Kaniadakis [17–19]. Such particular cases, as well as their
associated FPEs, will be discussed in the next section.

For the simpler situation of an isolated system, i.e.,
φ(x) = constant, the H-theorem should be expressed in
terms of the time derivative of the entropy, in such a way
that equation (14) should be replaced by

∂S[P ]
∂t

= −
∫ ∞

−∞
dx

(
Ω[P ]

∂P

∂x

) (
∂2g[P ]
∂P 2

∂P

∂x

)

= −
∫ ∞

−∞
dx Ω[P ]

∂2g[P ]
∂P 2

(
∂P

∂x

)2

≥ 0. (21)

In this case all that one needs is the standard condition
associated with the FPE [same condition (i) above], i.e.,
Ω[P ] ≥ 0, and the general restrictions of equation (11) for

the entropy. A similar result may also be obtained by prov-
ing the H-theorem using the master equation from which
equation (1) was derived, with the transition probabilities
introduced in references [38,39] (see the Appendix).

3.2 Boundness from below

Above, we have proven that the free-energy functional de-
creases in time, and so, for the existence of a stationary
state at long times of an evolution process, characterized
by a probability distribution Pst(x), one should have that

F (P (x, t)) ≥ F (Pst(x)) (∀t). (22)

In what follows, we will show this inequality and find
the conditions for its validity. Therefore, using equa-
tions (7, 11), and (12), we can write,

F (P (x, t)) =

∞∫
−∞

P (x, t)
(

φ0 − a
µ

µ − 1
Pµ−1

st (x)

−b
2 − ν

ν − 1
P ν−1

st (x)
)

dx − 1
β

∞∫
−∞

g[P ]dx, (23)

and so,

F (Pst) − F (P ) =

∞∫
−∞

(P − Pst)
(

a
µ

µ − 1
Pµ−1

st

+b
2 − ν

ν − 1
P ν−1

st

)
dx +

1
β

∞∫
−∞

(g[P ] − g[Pst]) dx, (24)

where we have used the normalization condition for the
probabilities. Now, we insert the entropic form of equa-
tion (20) in the equation above to obtain,

F (Pst) − F (P ) =

∞∫
−∞

[
a

µ − 1
Pµ

st Γµ[P/Pst]

+
b(2 − ν)
ν(ν − 1)

P ν
st Γν [P/Pst]

]
dx, (25)

where,

Γα[z] = 1 − α + αz − zα (α = µ, ν). (26)

By analyzing the extrema of the functional Γα[P/Pst],
one can see that Γα[P/Pst] ≥ 0 for 0 < α < 1 and
Γα[P/Pst] ≤ 0 for α > 1 and α < 0. Therefore, the in-
equality of equation (22) is satisfied for the range of pa-
rameters specified by equations (18) and (19), if one con-
siders additionally, ν > 0.

For the case of an isolated system, the stationary solu-
tion turns out to be the equilibrium state, which is the one
that maximizes the entropy. Therefore, one may use the
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concavity property of the entropy [cf. Eq. (11)] in order to
get,

S[Peq(x)]−S[P (x, t)] =

∞∫
−∞

(g[Peq] − g[P ]) dx ≥ 0 (∀t).

(27)

4 Some particular cases

In this section we analyze some particular cases of the
entropic form of equation (20) and using equation (15),
we find for each of them, the corresponding functional
Ω[P ] of the associated FPE. In the examples that follow,
we will set the Lagrange multiplier β = k/D, with k and
D representing, respectively, a constant with dimensions
of entropy and a constant diffusion coefficient.
(a) Tsallis entropy [9]: this represents the most well-known
generalization of the BG entropy, which has led to the
development of the area of nonextensive statistical me-
chanics [6–8]. One may find easily that equation (20)
recovers Tsallis entropy in several particular cases, e.g.,
{b = 0, a = D, µ = q}, {a = 0, b = Dν/(2 − ν), ν = q},
and {a = D/2, b = Dν/[2(2 − ν)], µ = ν = q}. For all
these cases one may use equation (15), in order to get the
corresponding functional Ω[P ],

g[P ] = k
P q − P

1 − q
; Ω[P ] = qDP q−1. (28)

With the functional Ω[P ] above, one identifies the non-
linear FPE that presents the well-known q-exponential,
or Tsallis distribution (replacing q → 2 − q), as a time-
dependent solution [21,22,26].
(b) Abe entropy [10]: this proposal was inspired in the
area of quantum groups, where certain quantities, usu-
ally called q-deformed quantities, are submitted to defor-
mations and are often required to possess the invariance
q ↔ q−1. The Abe entropy may be obtained from equa-
tion (20) in the particular case {a = D(q−1)/(q−q−1), b =
−Dq(q + 1)/[(q − q−1)(q + 2)], µ = −ν = q}, for which

g[P ] = −k
P q − P−q

q − q−1
;

Ω[P ] = D

(
q(q − 1)
q − q−1

P q−1 − q(q + 1)
q − q−1

P−q−1

)
. (29)

(c) Borges-Roditi entropy [12]: this consists in another
generalization of Tsallis entropy, where now one has two
distinct entropic indices, q and q′, with a more gen-
eral invariance q ↔ q′; this case may be obtained from
equation (20) by choosing {a = D(q − 1)/(q′ − q), b =
Dq′(q′ − 1)/[(q − q′)(2 − q′)], µ = q, ν = q′}. One gets,

g[P ] = −k
P q − P q′

q − q′
;

Ω[P ] = D
1

q − q′
(
q(q − 1)P q−1 − q′(q′ − 1)P q′−1

)
.

(30)

(d) Kaniadakis entropies [17–19]: the entropy proposed
in references [17,18] is also a two-exponent entropic form,
but slightly different from those presented in examples (b)
and (c) above; it may be reproduced from equation (20)
by choosing {a = b = D/[2(1 + q)], µ = 1 + q, ν = 1 − q},
in such a way that

g[P ] = − k

2q

(
1

1 + q
P 1+q − 1

1 − q
P 1−q

)
;

Ω[P ] =
D

2
(P q + P−q). (31)

However, the most recent entropy introduced by Ka-
niadakis [19], characterized by three free parameters
{q, r, ζ},

g[P ] = − k

B

[
ζqP r+q+1 − ζ−qP r−q+1 + (ζ−q − ζq)P

]
;

B = (q + r)ζq + (q − r)ζ−q , (32)

may be identified with the general entropic form of equa-
tion (20), for

µ = r + q + 1; ν = r − q + 1;

a

µ − 1
= D

ζq

B
;
b(2 − ν)
ν(ν − 1)

= −D
ζ−q

B
, (33)

or yet,

q =
µ − ν

2
; r =

µ + ν − 2
2

;

D = a + b

(
2 − ν

ν

)
; ζ2q =

a

b

ν(1 − ν)
(µ − 1)(2 − ν)

. (34)

In this case, considering the identifications above, the as-
sociated FPE is given by equation (1).

Except for the well-known example (a), i.e., Tsallis en-
tropy and its corresponding FPE, the other three particu-
lar cases presented herein were much less explored in the
literature. Their associated FPEs, defined in terms of their
respective functionals Ω[P ] above are, to our knowledge,
presented herein for the first time. These equations, whose
nonlinear terms depend essentially in two different pow-
ers of the probability distribution, may be appropriated
for anomalous-diffusion phenomena where a crossover be-
tween two different diffusion regimes occurs [25].

5 Conclusion

We have analyzed important aspects associated with a re-
cently introduced nonlinear Fokker-Planck equation, that
was derived directly from a master equation by setting
nonlinear effects on its transition rates. Such equation
is characterized by a nonlinear diffusion term that may
present two distinct powers of the probability distribu-
tion; for this reason, it may reproduce, as particular cases,
a large range of nonlinear FPEs of the literature. We have
obtained stationary solutions for this equation in several
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cases, and some of them recover the well-known Tsallis dis-
tribution. We have proven the H-theorem, and for that, an
important relation involving the parameters of the FPE
and an entropic form was introduced. Since the FPE is
a phenomenological equation that specifies the dynamical
evolution associated with a given physical system, such a
relation may be useful for identifying entropic forms as-
sociated with real systems and, in particular, anomalous
systems that exhibit unusual behavior and are appropri-
ately described by nonlinear FPEs. It is shown that, in the
simple case of a linear FPE, the Boltzmann-Gibbs entropy
comes out straightforwardly from this relation. Consid-
ering the above-mentioned nonlinear diffusion term, this
relation yields a very general entropic form, which simi-
larly to its corresponding FPE, depends on two distinct
powers of the probability distribution. Apart from Tsal-
lis’ entropy, other entropic forms introduced in the lit-
erature are recovered as particular cases of the present
one, essentially those characterized by two entropic in-
dices. Nonlinear FPEs (as well as their associated entropic
forms) whose nonlinear terms depend essentially on two
different powers of the probability distribution, like the
ones discussed in the present paper, are good candidates
for describing anomalous-diffusion phenomena where a
crossover between two different diffusion regimes may take
place. As a typical example, one could have a particle
transport in a system composed by two types of disor-
dered media, characterized respectively, by significantly
different grains (e.g., different average sizes), arranged in
such a way that the diffusion process is dominated by one
medium, at high densities, and by the other one, at low
densities.

Appendix A

In this appendix we will prove the H-theorem directly from
the master equation, for an isolated system (i.e., no exter-
nal forces). Let us consider a system described in terms of
W discrete stochastic variables; then, Pn(t) represents the
probability of finding this system in a state characterized
by the variable n at time t. This probability evolves in
time according to a master equation,

∂Pn

∂t
=

W∑
m=1

(Pmwm,n − Pnwn,m) , (35)

where wk,l(t) represents the transition probability rate
from state k to state l. The nonlinear effects were intro-
duced through the transition rates [38],

wk,l(∆) =
1

∆2
(δk,l+1+δk,l−1)[aPµ−1

k (t)+bP ν−1
l (t)], (36)

where ∆ represents the size of the step of the random walk.
Herein, we shall consider a random walk characterized by
∆ = 1; substituting such a transition rate in the master

equation one gets,

n = 1:
∂P1

∂t
= aPµ

2 − aPµ
1 + bP2P

ν−1
1 − bP1P

ν−1
2 , (37)

n = W :
∂PW

∂t
= aPµ

W−1−aPµ
W +bPW−1P

ν−1
W −bPW P ν−1

W−1,

(38)

n = 2, ..., (W − 1):
∂Pn

∂t
= a

(
Pµ

n+1 + Pµ
n−1

) − 2aPµ
n

+ bP ν−1
n (Pn+1 + Pn−1) − bPn

(
P ν−1

n+1 + P ν−1
n−1

)
,
(39)

where we have treated the borders of the spectrum (n = 1
and n = W ) separately from the rest. Let us now consider

the entropy, S =
W∑

n=1
g[Pn], satisfying the same conditions

specified in the text [see Eq. (11)]; the H-theorem, to be
proven below, is expressed in terms of its time derivative,

∂S

∂t
=

W∑
n=1

dg[Pn]
dPn

dPn

dt
≥ 0. (40)

Then, using equations (37–39) one can write this time
derivative as,

∂S

∂t
=

W−1∑
n=1

dg[Pn]
dPn

(
aPµ

n+1 − aPµ
n − bPnP ν−1

n+1 + bPn+1P
ν−1
n

)

+
W∑

n=2

dg[Pn]
dPn

(
aPµ

n−1− aPµ
n + bPn−1P

ν−1
n −bPnP ν−1

n−1

)
.

(41)

The sum indices can be rearranged to yield all summations

in the range
W−1∑
n=1

, and thus the time derivative of the

entropy becomes,

∂S

∂t
=

W−1∑
n=1

(
dg[Pn]
dPn

− dg[Pn+1]
dPn+1

) [
a

(
Pµ

n+1 − Pµ
n

)

−bPnPn+1

(
P ν−2

n+1 − P ν−2
n

)]
. (42)

The negative curvature of the entropic function [cf.
Eq. (11)] implies that its first derivative decays mono-
tonically with Pn. Hence, for Pn+1 > Pn, the condition of
equation (40) is satisfied for

a
Pµ

n+1 − Pµ
n

Pn+1 − Pn
− bPnPn+1

P ν−2
n+1 − P ν−2

n

Pn+1 − Pn
≥ 0, (43)

where we divided the term inside the brackets in equa-
tion (42) by the difference ∆P = Pn+1 − Pn. Now we
consider the limit ∆P → 0 and obtain,

aµPµ−1 + b(2 − ν)P ν−1 ≥ 0, (44)

which corresponds to the condition Ω[P ] ≥ 0 found in
the text, when proving the H-theorem by making use of
the FPE of equation (1). It should be mentioned that the
procedure above works also for Pn > Pn+1; therefore, in
this appendix we have proven that the H-theorem holds for
an arbitrary state n and all times t of an isolated system.
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